Foreign and chimeric external scaffolding proteins as inhibitors of Microviridae morphogenesis.
نویسندگان
چکیده
Viral assembly is an ideal system in which to investigate the transient recognition and interplay between proteins. During morphogenesis, scaffolding proteins temporarily associate with structural proteins, stimulating conformational changes that promote assembly and inhibit off-pathway reactions. Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and an external species. The external scaffolding protein is the most conserved protein within the Microviridae, whose canonical members are phiX174, G4, and alpha3. However, despite 70% homology on the amino acid level, overexpression of a foreign Microviridae external scaffolding protein is a potent cross-species inhibitor of morphogenesis. Mutants that are resistant to the expression of a foreign scaffolding protein cannot be obtained via one mutational step. To define the requirements for and constraints on scaffolding protein interactions, chimeric external scaffolding proteins have been constructed and analyzed for effects on in vivo assembly. The results of these experiments suggest that at least two cross-species inhibitory domains exist within these proteins; one domain most likely blocks procapsid formation, and the other allows procapsid assembly but blocks DNA packaging. A mutation conferring resistance to the expression of a chimeric protein (chiD(r)) that inhibits DNA packaging was isolated. The mutation maps to gene A, which encodes a protein essential for packaging. The chiD(r) mutation confers resistance only to a chimeric D protein; the mutant is still inhibited by the expression of foreign D proteins. The results presented here demonstrate how closely related proteins could be developed into antiviral agents that specifically target virion morphogenesis.
منابع مشابه
Efficient complementation by chimeric Microviridae internal scaffolding proteins is a function of the COOH-terminus of the encoded protein.
Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and external species. Both structural and genetic analyses suggest that the COOH-terminus of the internal protein is critical for coat protein recognition and specificity. To test this hypothesis, chimeric internal scaffolding genes between Microviridae members phiX174, G4, and alpha3 were constructed and the prote...
متن کاملGenetic analyses of putative conformation switching and cross-species inhibitory domains in Microviridae external scaffolding proteins.
Putative conformational switching and inhibitory regions in the Microviridae external scaffolding protein were investigated. Substitutions for glycine 61, hypothesized to promote a postdimerization conformational switch, have dominant lethal phenotypes. In previous studies, chimeric alpha3/phiX174 proteins for structures alpha-helix 1 and loop 6/alpha-helix 7 inhibited phiX174 morphogenesis whe...
متن کاملChlamydiaphage Chp2, a skeleton in the phiX174 closet: scaffolding protein and procapsid identification.
Chlamydiaphage Chp2 is a member of the family Microviridae, of which bacteriophage phiX174 is the type species. Although grouped in the same family, the relationship between the Microviridae coliphages and the Chp2-like viruses, which infect obligate intracellular parasitic bacteria, is quite distant, with major differences in structural protein content and scaffolding protein dependence. To in...
متن کاملCharacterization and function of putative substrate specificity domain in microvirus external scaffolding proteins.
Microviruses (canonical members are bacteriophages phiX174, G4, and alpha3) are T=1 icosahedral virions with an assembly pathway mediated by two scaffolding proteins. The external scaffolding protein D plays a major role during morphogenesis, particularly in icosahedral shell formation. The results of previous studies, conducted with a cloned chimeric external scaffolding gene, suggest that the...
متن کاملIn VITRO ASSEMBLY of the øX174 procapsid from external scaffolding protein oligomers and early pentameric assembly intermediates.
Bacteriophage øX174 morphogenesis requires two scaffolding proteins: an internal species, similar to those employed in other viral systems, and an external species, which is more typically associated with satellite viruses. The current model of øX174 assembly is based on structural and in vivo data. During morphogenesis, 240 copies of the external scaffolding protein mediate the association of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 74 20 شماره
صفحات -
تاریخ انتشار 2000